Vol. 5, No. 1 January, 1985

$O(^{3}P) + C_{2}F_{4}$ 反应生成的 $CF_{2}(^{3}B_{1})$

周士康 詹明生 邱元武 刘颂豪 (中国科学院安徽光学精密机械研究所)

> 史济良 李方琳 姚介兴 (中国科学院上海有机化学研究所)

提 要

本文报道 $O({}^{3}P) + C_2F_4$ 化学发光反应生成的 $CF_2({}^{3}B_1)$ 的发射光谱和能量转移的实验研究结果,获得 了一些新的振动带和 Franck-Condon 因子,并给出了 $CF_2({}^{3}B_1)$ 的振动态粒子数分布与 C_2F_4 流量的关系。

一、引 盲

简单的卡宾由于在光化学、大气污染和燃烧过程中所起的重要作用而引起人们很大的 注意, CF₂ 是其中的一个比较稳定的自由基⁽¹⁾。1950 年 Venkateswarlu⁽²⁾ 首先用放电激发 流动的 CF₄ 观察到 CF₂(¹B₁)→CF₂(¹A₁)的紫外发射光谱。以后,用放电或光解的方法产 生和研究了 CF₂($\tilde{X}^{1}A_{1}$)的微波谱⁽³⁾、红外光谱⁽⁴⁾和电子吸收谱(¹B₁←¹A₁)^(5,6),获得了 CF₂ 的不少结构参数和有关¹B₁--¹A₁ 跃迁的光谱数据。1968 年 Johnston 等人⁽⁷⁷在研究 O(³P) +C₂F₄ 反应时假设有初生的三重态 CF₂(³B₁)形成,后来的量子化学计算⁽⁸⁾也预示在 $\tilde{X}^{1}A_{1}$ 上面有三重态存在。 直到 1978 年 Koda⁽⁹⁾ 才在流动系统中首次直接记录了 O(³P) +C₂F₄ 反应产生的 470~720 nm 范围内的化学发光光谱,并指定为三重 态 与 单 一态 间的 跃迁 CF₂($\tilde{a}^{3}B_{1}$)→OF₂($\tilde{X}^{1}A_{1}$)。接着 S. Toby 和 F. S. Toby⁽¹⁰⁾ 在 O₃+C₂F₄ 反应中也观察到 同样的发射谱。CF₂($\tilde{a}^{1}B_{1}$)的发射光谱的研究不仅对完整地解释 O(³P)+C₂F₄ 这一基元反应 的动力学过程是必不可少的,而且对同位素分离和选择性合成⁽¹¹⁾ 以及卡宾的理论化学工作 都有重要的意义。

然而,迄今为止,对有关 CF_2 三重态的光谱及反应动力学的研究工作虽逐渐增多^[12~15], 但还很不完善。原因之一可能是由于 ${}^{8}B_1 \rightarrow {}^{1}A_1$ 为禁戒跃迁, ${}^{8}B_1$ 能级的寿命约为 1 sec 的量 级, ${}^{3}B_1 \rightarrow {}^{1}A_1$ 的磷光非常微弱。本文报道用分子束装置研究 $O({}^{8}P) + C_2F_4$ 化学发光反应生 成的 $CF_2({}^{8}B_1)$ 的实验结果和分析。

二、实验装置

图 1 为实验装置示意图。 O₂ 和 Ar 按一定比例混合后(最佳混合比为 O₂:Ar=1:10) 收稿日期: 1984年3月30日; 收到修改稿日期: 1984年6月29日 由石英管经微波腔(微波发生器 Microtron 200, 频率 2450 MHz, 输出功率控制在 120 W)

后离解为 O(³P) 原子^[16],再经过两个伍德角后由 ϕ 1.5mm 的喷嘴进入真空室,喷嘴至反应区中心的距 离为 6mm。用"陷阱-陷阱"方法纯化后的 C₂F₄ 气体 则由与 O 原子束正交的 ϕ 0.8mm 喷嘴进入反应 区, 喷嘴离反应区中心的距离为 15mm。两束交 叉发生 反应,产物的发射光通过玻璃透镜集光系统,经单色仪 分光后由光电倍增管探测,并由光子计数器接收。 扫 描单色仪时光子计数器的模拟输出在记录仪上画出光 谱。在集光系统对面安置了一个球面反射镜,以增加 集光效率,经测定可提高效率约 30%。

单色仪由钠光灯定标,精度为±1Å;探测系统的相对光谱灵敏度由经定标的标准钨带 灯测得;进入真空室的各路气体的流量由经过校正的流量计分别测定,同时用皮喇尼规管测 定真空室的总气压。真空室由机械泵抽真空,典型条件下真空室的气压为4mbar。

三、结果和讨论

1. 化学发光的像

图 2 是由自制的两维光强分布测试仪通过真空室的一个有机玻璃窗,在与两个喷嘴所 在平面成 45°的方向上摄得的化学发光的像。上方是 O 原子束喷嘴,右端是 C₂F₄ 分子束 喷嘴。化学发光用肉眼可以看到。在分子束装置中由于两反应物成束后在反应区交叉,相 对流动系统而言,在同样背景气压下反应区中反应物的粒子数密度比较大,并且分子束装置 中不存在管壁效应,因而化学发光强度较大。

图 2 化学发光的像(上方是 O 原子束 喷嘴,右端是 C₂F₄ 分子束喷嘴) Fig. 2 Photo of the chemiluminescence

图 3 反应 O(³P)+C₂F₄ 的化学发光光谱(分辨率: 1.0 nm,流量 Ar: 125.0 SCCM, O₂: 12.8 SCCM, C₂F₄: 12.1SCCM。光谱未经光学探测系统的灵敏度修正) Fig. 3 Chemiluninescence spectra of the reaction O(³P) +C₂F₄. (The spectra are not corrected for the sensitivity of the optical detection system)

2. 化学发光光谱

图 3 是典型的 430~800 nm 范围内的化学发光光谱。最右端的双峰,中心位于 762 nm,

来自 $O_2(b^{1}\Sigma_g^+) \rightarrow O_2(X^{3}\Sigma_g^-)^{[17]}$ 跃迁。由于无 O_2F_4 进入时没有观察到任何谱带,所以 O_3 ($b^{1}\Sigma_g^+$) 是 O_2/Ar 的放电产物,很可能是由 微 波放 电残存的 O_2 经 $CF_2(^{3}B_1) + O_2(^{3}\Sigma_g^-) \rightarrow$ $CF_2(^{1}A_1) + O_2(^{1}\Sigma_g^+)$ 反应生成其它谱带按 Koda^[3] 的指定属于 $OF_2(^{3}B_1) \rightarrow OF_2(^{1}A_1)$ 跃迁。

除已被观察到的 19 个振动带外,我们发现了 17 个新的弱 振动带,其中 (0, 0, 0) \rightarrow $(1, v_2', 0)$ 前进带组的五个带也是第一次测其位置。通过慢扫描 (85\AA/min) 单色仪,并经 多次重复测定了各带的最大值位置 $(\pm 1 \text{\AA})$,转换为真空中的波数 $v_{3,2}$,得到跃迁 CF_a $(^3B_1)$ \rightarrow CF₂ $(^1A_1)$ 的新的 Deslandres 表(表 1)。表中 $v_2'=0$ 的前进带组很长,有 11 个带。由此 可预料 CF₂ 分子由 $^{3}B_1$ 态到 $^{1}A_1$ 态的跃迁键角变化很大,这与其他学者的研究结果^[83] 是一致的。

$v_1'v_2'$ $v_1'v_2'$	00	01	02	03	04
00	19827 517 663	20344 515 663	20859 514 665	20 373 508	20881*
01	19164 517	19681 513	20194 516	20710*	
	662	664	660		
02	18502 515	19017 517	19534*		
	669	660			
03	17833 524	18357*			
	661	661			
04	17172 524	17696* 519	18215*		
	664		671		
05	16508		17544*		
	662				
06	15846 519	16365*	1		
	661	663			
07	15185 517	15702			
	663	659			
08	14522 521	15043			
	655	658			
09	13867 518	14385 513	14898*		
	655	659	660		
010	13212* 514	13726* 512	14238*		
14	15968*				
	659	1			
15	15309*				
	659				
16	14650*			l i	
	653				
17	13997*				
	654				
18	13343*				

表 1 $\mathbf{CF}_2({}^{3}B_1) \rightarrow \mathbf{CF}_2({}^{1}A_1)$ 跃迁的 Deslandres 表 $\nu_{\mathbf{X}^{\underline{\alpha}}}(\mathrm{cm}^{-1})$ Table 1 Deslandres Table of $\mathbf{CF}_2({}^{3}B_1) \rightarrow \mathbf{CF}_2({}^{1}A_1)$

注 * 是本实验新观察到的或第一次确定其位置的谱带。

用表1中的数据可由最小二乘法拟合得出跃迁波数的表达表为

 $\nu_{\text{vac}} \approx 19827 + 520 v'_2 - 1.71 v'_2^2 - (1228 v''_1 - 5.5 v''_1 v''_2 + 665 v''_2 - 0.3 v''_2^2)$ (cm⁻¹), (1) 由此式计算的波数与测量值的误差平均为 2 cm⁻¹。

同时,表1还给出 $\nu'_2 = (519 \pm 1)$ cm⁻¹, $\nu''_2 = (664 \pm 1)$ cm⁻¹, $\nu''_1 = (1193 \pm 5)$ cm⁻¹ 共两个 振动模式的三个基频数值。

8. Franck-Condon 因子和振动态粒子数分布

由电子振动跃迁的发射强度公式,对同一个 v2 前进带组有

$$\frac{\langle v_2' | v_2'' \rangle^2}{\langle v_2' | 0 \rangle^2} = \frac{I_{v_1 v_2}}{I_{v_2 0}} \cdot \frac{S_{v_2 0}}{S_{v_2 v_1^*}} \cdot \left(\frac{\nu_{v_2 0}}{\nu_{v_2 v_2^*}}\right)^4, \tag{2}$$

式中 $\nu_{v_iv_i}$ 表示跃迁 $(0 v'_2 0) \rightarrow (0 v''_2 0)$ 的中心波数 (取自表 1), $I_{v_iv_i}$ 为发射谱带 $(0 v'_2 0) \rightarrow (0 v''_2 0)$ 的强度, $S_{v_iv_i}$ 为 $\nu_{v_iv_i}$ 处探测系统的灵敏度, $\langle v'_2 | v''_2 \rangle^2$ 为 $(0 v'_2 0) \rightarrow (0 v''_2 0)$ 的 Franck-Condon 因子。

为了更准确地获得单个带的位置和强度, 假定各个带强度分布近似相同, 用同一归一化的分布对重叠的带进行最小二乘拟合, 从而得出各个带的最大值位置和面积, 这面积就是带强度。由此可从(2)式求得 Franck-Condon 因子, 其结果见表 2。其中每一个 ½ 前进带 组的 Franck-Condon 因子的相对值是由(2)式求得。各前进带 组间的 Franck-Condon 因子相对值则取自 Koda^[0]的结果, 而 <0|5>² 取值 1.00。所得结果与单一态跃迁的 Franck-Condon 因子^[0]相似。可见三重态与单一态在跃迁时, 分子结构的变化有很大类似性。

Table 2 Franck-Condon factors of $CF_2({}^{8}B_1) \rightarrow CF_2({}^{1}A_1)$							
v_2''	0	1	2	3			
0	0.04	0.15	0.36	0.57			
1	0.18	0,53	0.60	0.51			
2	0.44	0.74	0.33				
3	0.74	0.57					
4	0.91						
5	1.00						
6	0.84	0.37					
7	0.46	0,52					
8	0.17	0.39					
9	0.07	0.21					
10		0.10					

表 2 CF₂(³B₁)→CF₂(¹A₁)跃迁的 Franck-Condon 因子

表 3 不同流量下 CF₂(³B₁)的振动态的粒子数分布

流量 (SCCM)	0.8	3.3	11.6	16.6	24.1
No	1.00	1.00	1.00	1.00	1.00
N_1	0,29	0.26	0.24	0,24	0.21
N_2	0.14	0.10	0.08	0.08	
N_3	0.05	0.04	0.03	0.02	

Table 3 Population distribution of vibrational state of $CF_2({}^{3}B_1)$ at different flux

对来自不同 v2 能级的跃迁,有相对粒子数公式(以相对于 v2=0 为例):

$$\frac{N_{v_1}}{N_0} = \frac{I_{v_1v_2'}}{I_{0v_1'}} \cdot \frac{S_{0v_2'}}{S_{v_2v_2'}} \cdot \left(\frac{\nu_{0v_1'}}{\nu_{v_1v_2'}}\right)^4 \cdot \frac{\langle 0 | v_2' \rangle^2}{\langle v_2' | v_2'' \rangle^2},\tag{3}$$

其中 N_{v_1} 是 ${}^{3}B_1$ 电子态、 v'_2 振动能级的粒子数。 由于已求得 Franck-Condon 因子,各振动能级的 相对粒子数可求。 固定 O_2 流量为 13.0 SCCM, Ar 流量为 118.0 SCCM 和微波功率为120 W 不 变,改变 C_2F_4 的流量,即可得到不同流量下的振 动态粒子数分布,其结果见表 3。由表 3 可见,随 C_2F_4 的增加, $CF_2({}^{3}B_1)$ 高振动受激态的相对粒子 数减少。以 N_1/N_0 为例,图 4 表示随 C_2F_4 压力的 增加, $v'_2=1$ 能级的相对粒子数不断减少,在测量 范围内呈线性关系。由此可见, C_2F_4 对 $CF_2({}^{3}B_1)$ 的振动弛豫是有效的。但由于未测量 O_2/Ar 放电 中 O_2 的离解效率,不能进行定量的动力学分析。

感谢蔡小鸿工程师的协助。

参考文献

- [1] F. W. Dalby; J. Chem. Phys., 1964, 41, No. 8 (Dec), 2297
- [2] P. Venkateswarlu; Phys. Rev., 1950, 77, No. 5 (Mar), 676.
- [3] F. X. Powell, D. R. Lide; J. Chem. Phys., 1966, 45, No. 3 (Aug), 1067.
- [4] D. E. Milligan, D. E. Mann et al.; J. Chem. Phys., 1964, 41, No. 5 (Sep), 1199.
- [5] C. W. Mathews; Can. J. Phys., 1967, 45, No. 7 (Jul), 2355.
- [6] D. S. King, P. K. Schenck et al.; J. Mol. Spectrosc., 1979, 78, No. 1 (Oct), 1.
- [7] T. Tohnston, J. Heicklen; J. Chem. Phys., 1967, 47, No. 2 (Jul), 475.
- [8] V. Staemmler; Theo. Chem. Acta, 1974, 35, No. 4 (Nov), 309.
- [9] S. Koda; Chem. Phys. Lett., 1978, 55, No. 2 (Apr), 353.
- [10] S. Toby, F. S. Toby; J. Phys. Chem., 84, No. 2 (Jan), 206.
- [11] D. S. King, J. C. Stephenson; J. Amer. Chem. Soc., 1978, 100, No. 23 (Nov), 7151.
- [12] S. Koda; J. Phys. Chem., 1979, 83, No. 16 (Aug), 2065.
- [13] S. Koda; Chem. Phys. Lett., 1980, 69, No. 3 (Feb), 574.
- [14] P. A. Gorry, R. J. Browett et al.; Mol. Phys., 1980, 40, No. 6(Mar), 1325.
- [15] S. Koda; Chem. Phys., 1982, 66, No. 3 (Apr), 383.
- [16] P. A. Gorry, R. Grice; J. Phys. (E): Sci. Instrum., 1979, 12, No. 9 (Sep), 857.
- [17] A. U. Khan, M. Kasha; J. Amer. Chem. Soc., 1970, 92, No. 11 (Jun), 3293.

$CF_2(^3B_1)$ produced by reaction $O(^3P) + C_2F_4$

ZHOU SHIKANG ZHAN MINGSHENG QIU YUANWU AND LIU SONGHAO (Anhui Institute of Optics and Fine Mechanics, Academia Sinica)

> SHI JILIANG LI FANGLIN AND YAO JIEXING (Shanghai Institute of Organic Chemistry, Academia Sinica)

> > (Received 30 Mach 1984; revised 29 June 1984)

Abstract

This paper reports the experimental results of the emission spectra and energy transfer of $CF_2({}^{3}B_1)$ produced by reaction $O({}^{3}P) + C_2F_4$. Some new vibrational bands and Franck-Condon factors are obtained. The relation between the vibrational state distribution of $CF_2({}^{3}B_1)$ and the flux of C_2F_4 are also given.